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Abstract. We �nd Green's function for two weighted Laplacians in the unit
disc and express them in terms of the zero-balanced Gauss' hypergeometric
function 2F1(1, α+ 1;α+ 2; z). The two weights that are considered are |z|2α
and (1 − |z|2)α where α > −1. The Bergman kernels for these two weights
are calculated using Green's function. The connection to the Poisson kernel is
also veri�ed for the known case (1− |z|2)α and in the case |z|2α an expression
for the kernel is calculated.
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1. Introduction

In [6] Garabedian showed the existence of Green's function for the following
weighted Laplace equation:

∂

∂z

1

ρ(z)

∂

∂z
u(z) = 0, z ∈ Ω, (1)

where Ω is a domain in the complex plane, ρ : Ω → [0,∞) is a positive weight
function and

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
where z = x+ iy.

Physically we can interpret this equation as the complex equivalent of the con-
ductivity equation for the electric potential inside a material with conductivity
σ = 1

ρ

∇ · 1

ρ
∇u = 0, (2)

where this di�erential operator is equivalent to the real part of the operator in (1)
and our weight ρ is interpreted as the resistivity. This equation can be derived by
considering the continuity equation ∇ · J = −∂ρ∂t (here ρ is charge density), which

for steady currents reduces to ∇ · J = 0. Then since J = σE = 1
ρE and E = ∇u,

we get ∇ · 1
ρ∇u = 0.
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To see that the operator in (2) is equivalent to the real part of the weighted
Laplacian operator in (1) we calculate

∂

∂z

1

ρ(z)

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
1

ρ(z)

1

2

(
∂

∂x
− i ∂

∂y

)
=

1

4

(
∂

∂x

1

ρ(z)

∂

∂x
+

∂

∂y

1

ρ(z)

∂

∂y
+ i

∂

∂y

1

ρ(z)

∂

∂x
− i ∂

∂x

1

ρ(z)

∂

∂y

)
and

∇ · 1

ρ
∇ =

(
∂

∂x
,
∂

∂y

)
·
(

1

ρ

∂

∂x
,

1

ρ

∂

∂y

)
=

∂

∂x

1

ρ(z)

∂

∂x
+

∂

∂y

1

ρ(z)

∂

∂y
.

We conclude that

∇ · 1

ρ
∇ = Re

[
4
∂

∂z

1

ρ(z)

∂

∂z

]
.

Among the reasons for studying these weighted problems, the most noteworthy
may actually be a kind of inverse of Dirichlet's boundary value problem for the
equation (2). This is referred to as Calderon's inverse problem and is stated as
�nding σ uniquely if we know the so called Dirichlet to Neumann map

Λσ : u|∂Ω 7→ σ
∂u

∂ν

∣∣∣∣
∂Ω

.

Physically we can interpret this map as how di�erent potentials on the surface gen-
erates current through the surface, and then Calderon's inverse problem is �nding
the conductivity inside, which may be used for example in medicine as an imaging
tool called Electrical Impedance Tomography. It was solved for conductivities in
W 1,p(Ω), p > 2 and Ω a Lipschitz domain in the plane, by Brown and Uhlmann [4]
and later for any bounded simply connected domain Ω in the plane and conductiv-
ities in L∞(Ω) by Astala and Päivärinta [2].

Our main object of study will be:

De�nition 1. Green's function Gρ(z, w) for the equation (1) in the unit disc D is
de�ned as a function satisfying, for a �xed w inside D,

i) −4 ∂
∂z

1
ρ(z)

∂
∂zGρ(z, w) = δ0(z − w),

ii) Gρ(z, w) = 0 if z ∈ ∂D.

The coe�cient 4 is present to normalize the weighted Laplacian. For if we

consider the unweighted case ρ = 1 the weighted Laplacian reduces to ∂2

∂z∂z = 1
4∆

and so the �rst condition becomes −∆Gρ(z, w) = δ0, which is the classical de�nition
(see [5] for the real case).

Note that Green's function has the symmetry property

Gρ(z, w) = Gρ(w, z) (3)

so that Gρ(w, z) as a function of w is Green's function for the conjugate of the

weighted Laplacian, that is the operator ∂
∂w

1
ρ
∂
∂w .

If we know Green's function we can use it to uniquely represent the solution to
the Dirichlet boundary value problem{ ∂

∂z
1
ρ(z)

∂
∂zu(z) = 0 z ∈ D
u(z) = f(z) z ∈ ∂D.

(4)

Garabedian considered the case where the boundary value function f is continu-
ously di�erentiable and in this setting he showed the representation formula for the
solution:

u(z) =

∫
∂D

f(ζ)

ρ(ζ)

∂Gρ(z, ζ)

∂ν(ζ)
ds(ζ) (5)
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where s is the arc length and ν(ζ) is the inner unit normal at ζ ∈ ∂D. Nowadays
we usually allow f to be a distribution on ∂D and consider weak solutions to (4)
instead.

The unweighted case ρ = 1, often referred to as the classical case, is treated in
many books on partial di�erential equations (for the real case see for instance [5]).
Green's function for the unit disc in the classical case is

G(z, w) = − 1

2π
ln |z − w|+ 1

2π
ln |w||z − w∗|

where w∗ = 1
w is the re�ection (or sometimes called the inversion) of w in the unit

circle. This allows us to write

G(z, w) = − 1

2π
ln |z − w|+ 1

2π
ln |1− zw|. (6)

Since both our weights are equal to 1 when α = 0 it is natural to require that
when α = 0 our weighted Green's functions should be equal to the classical Green's
function.

The aim of this text is to establish Green's function for the weighted Laplacians
with weights |z|2α and (1 − |z|2)α, where α > −1. We will also �nd the Bergman
kernels Kρ associated with the weighted norms

||f || =
∫
D
|f(z)|2ρ(z)dA(z).

For information regarding the kernel function we recommend Bergman's book [3].
We will start with the Green's functions and then use the following formula for the
Bergman kernel:

Kρ(z, w) = − 4

ρ(z)ρ(w)

∂2Gρ(z, w)

∂z∂w
, z 6= w, (7)

which was also shown in [6]. Note that this formula di�ers in the coe�cients from
the formula found in [6]. This is due to the fact that in Garabedian's version of (5)
there is a factor 1

2π in front of the integral. We have embedded this coe�cient in
Gρ(z, w) and therefore the formula for Kρ(z, w) is adjusted accordingly.

In conclusion, by comparing the representation (5) and the representation using
Poisson's integral we will be able to �nd the Poisson kernel for these two weights.
For the weight ρ(z) = (1− |z|2)α the kernel was found in the soon to be published
paper [8] by Olofsson and Wittsten. In the other case, ρ(z) = |z|2α, we will calculate
an expression for it.

The main results of this text are these two Green's functions:

Proposition 1. Green's function for the weighted Laplacian ∂
∂z

1
ρ(z)

∂
∂z in D with

weight ρ(z) = |z|2α, α > −1, is given by

Gρ(z, w) =
1

4π

[
|z|2αΨ

( z
w

)
+ |w|2αΨ

(
w

z

)
−Ψ

(
1

wz

)
− |w|2α|z|2αΨ(wz)

]
where

Ψ(z) = z

∫ 1

0

tα

1− tz
dt =

z

α+ 1
2F1(1, α+ 1;α+ 2; z).

Note that Ψ(z) has a branch point at z = 1, and so we make a branch cut from
z = 1 to z =∞ along the real axis.

Proposition 2. Green's function for the weighted Laplacian ∂
∂z

1
ρ(z)

∂
∂z in D with

weight ρ(z) = (1− |z|2)α, α > −1, is given by

Gρ(z, w) =
1

4π

(1− |w|2)α(1− |z|2)α

(1− wz)α
Ψ

(
(1− |w|2)(1− |z|2)

|1− wz|2

)
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where

Ψ(z) = z

∫ 1

0

tα

1− tz
dt =

z

α+ 1
2F1(1, α+ 1;α+ 2; z), z ∈ D.

Using these two functions we will be able to show the following corollaries giving
the Bergman and Poisson kernels.

Corollary 1. The Bergman kernel for D with weight ρ(z) = |z|2α, α > −1, is
given by

Kρ(z, w) =
1

π

1

(1− zw)2
+
α

π

1

1− zw
.

Corollary 2. The Poisson kernel for the weighted Laplace equation (1) in D with
the weight ρ(z) = |z|2α, α > −1, is given by

Pρ(z) =
1

1− z
+
z|z|2α

1− z
.

Corollary 3. The Bergman kernel for D with weight ρ(z) = (1 − |z|2)α, α > −1,
is given by

Kρ(z, w) =
α+ 1

π

1

(1− zw)α+2
.

Corollary 4. The Poisson kernel for the weighted Laplace equation (1) in D with
the weight ρ(z) = (1− |z|2)α, α > −1, is given by

Pρ(z) =
(1− |z|2)α+1

(1− z)(1− z)α+1
.

2. Prerequisites

In this section we will present the necessary de�nitions and lemmas regarding the
Wirtinger derivatives, the distribution ∂

∂z
1
π

1
z−ζ and the hypergeometric function

2F1. The reader who feels su�ciently informed about such matters may skip to
Section 2.4, where we de�ne the auxiliary function Ψ(z).

2.1. The Wirtinger derivatives. Let ∂
∂z and ∂

∂z be the two Wirtinger di�eren-
tial operators which are de�ned as

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
where z = x+ iy.

These operators are also called the Cauchy-Riemann operators. Mainly because
if we apply these operators to an analytic function f we get, using the Cauchy-
Riemann equations,

∂f

∂z
= f ′(z) and

∂f

∂z
= 0.

(For details see for example Section 11.1 in [9].) Note also that if f is z-analytic

we get that ∂f
∂z = 0.

With respect to the complex conjugate we get the following behavior:

∂f

∂z
=
∂f

∂z
and

∂f

∂z
=
∂f

∂z
. (8)

For these operators the usual product rule holds and their chain rules are

∂(f ◦ g)

∂z
=

(
∂f

∂z
◦ g
)
∂g

∂z
+

(
∂f

∂z
◦ g
)
∂g

∂z
,

∂(f ◦ g)

∂z
=

(
∂f

∂z
◦ g
)
∂g

∂z
+

(
∂f

∂z
◦ g
)
∂g

∂z
.
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Note that if the outer function f is analytical the second term vanishes, since
∂f
∂z = 0, and we get the following chain rules instead

∂(f ◦ g)

∂z
=

(
∂f

∂z
◦ g
)
∂g

∂z
, (9)

∂(f ◦ g)

∂z
=

(
∂f

∂z
◦ g
)
∂g

∂z
.

2.2. The ∂
∂z -lemma. We will frequently encounter the distribution ∂

∂z
1
π

1
z−ζ and

its complex conjugate. The following lemma states the well-known fact that we can
interpret 1

π
1
z−ζ as the fundamental solution to the ∂

∂z -operator.

Lemma 1. It holds that
∂

∂z

1

π

1

z − ζ
= δ0(z − ζ)

in the sense of distributions.

For a proof see the discussion leading up to the expression (3.1.12) in [7]. But
essentially we can consider the action of ∂

∂z
1
π

1
z−ζ on a test function φ(z). Using the

distributional derivative we see that

∂

∂z

1

π

1

z − ζ
[φ] = − 1

π

1

z − ζ

[
∂φ

∂z

]
= − 1

π

∫
C

∂φ(z)

∂z

1

z − ζ
dA(z).

Here we can either use the complex version of Green's theorem or use a simpler,
more direct proof as in Lemma 20.3 in [9]. We omit the details. We end up with

− 1

π

∫
C

∂φ(z)

∂z

1

z − ζ
dA(z) = φ(ζ)

and thus ∂
∂z

1
π

1
z−ζ = δ0(z − ζ) in the sense of distributions.

2.3. The hypergeometric function. The expressions for Green's function will
be connected to the following well-known function.

De�nition 2. The hypergeometric function (sometimes referred to as Gauss' hy-
pergeometric function) can be de�ned as

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
if |z| < 1 (10)

where (x)n is Pochhammer's symbol de�ned using the gamma function as

(x)n =
Γ(x+ n)

Γ(x)
=

{
1 n = 0

x(x+ 1) · · · (x+ n− 1) n = 1, 2, . . . .

Outside of |z| < 1 we de�ne 2F1 using analytic continuation.

Information and formulas regarding the hypergeometric function can be found
in [1], which is only one among many excellent sources.

The hypergeometric functions that we will encounter has a branch point at z = 1
and therefore we need to make a branch cut. One usually takes the branch cut
extending from z = 1 to z =∞ along the real axis.

There exists several integral representations for the hypergeometric function.
The one that is of most value to us is called Euler's formula

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt (11)

which is valid when Re(c) > 0 and Re(b) > 0. This formula can be used for the
analytic continuation as well as being a useful tool for proving properties. To show



6 GUSTAV BEHM

this formula note that if |z| < 1 we can expand (1 − tz)−a using a binomial series
which converges uniformly in D. Then use known properties for the Beta function
to simplify the resulting series so that we can identify it with (10). Information
and properties about the Beta functions can also be found in [1].

We will only be interested in a special case called the zero-balanced hypergeomet-
ric function: 2F1(1, α+ 1;α+ 2; z), which has the following integral representation
if α > −1:

2F1(1, α+ 1;α+ 2; z) =
Γ(α+ 2)

Γ(α+ 1)Γ(1)

∫ 1

0

tα(1− tz)−1dt

= (α+ 1)

∫ 1

0

tα

1− tz
dt.

2.4. The auxiliary function Ψ(z). We de�ne an auxiliary function Ψ(z) which
is present in both our Green's functions.

De�nition 3. Let Ψ(z) be de�ned for α > −1 as

Ψ(z) = z

∫ 1

0

tα

1− tz
dt =

z

α+ 1
2F1(1, α+ 1;α+ 2; z).

It has the following properties:

• Ψ(0) = 0
• Ψ(z) is analytic inside D and has an analytic continuation outside of D
except at z = 1 where it has a branch point. Therefore make a branch
cut from z = 1 to z = ∞ along the real axis, hence Ψ(z) is analytic on
z ∈ C \ [1,∞).
• In the unweighted case α = 0 it holds that

Ψ(z) = z

∫ 1

0

1

1− tz
dt = [− ln(1− tz)]10 = − ln(1− z).

• Since Ψ(z) is real when z lies in the interval (−1, 1) on the real axis, we can
with an application of the identity theorem for analytic functions see that
Ψ(z) = Ψ(z) if z ∈ C \ [1,∞). To motivate this, set Ξ(z) = Ψ(z) − Ψ(z)
and note that it is de�ned and analytic on z ∈ C \ [1,∞). Observe that for
z ∈ (−1, 1) we have Ξ(z) = 0. Hence the identity theorem yields Ξ(z) = 0

in z ∈ C \ [1,∞) and so Ψ(z) = Ψ(z) on the same set.

In our Green's functions we are going to encounter the expression zαΨ(z) and
we will want to apply the ∂

∂z operator to it. We proceed by using the product rule
and we �nd that

∂

∂z
(zαΨ(z)) = αzα−1Ψ(z) + zα

∂

∂z
Ψ(z) = zα

[
α

z
Ψ(z) +

∂

∂z
Ψ(z)

]
.

So if we de�ne the operator Lα = α
z + ∂

∂z and calculate LαΨ we �nd the derivative
by

∂

∂z
(zαΨ(z)) = zαLαΨ.

We �nd the action of LαΨ as follows:

LαΨ =
α

z
Ψ(z) +

∂

∂z
Ψ(z) =

α

z
z

∫ 1

0

tα

1− tz
dt+

∂

∂z

[
z

∫ 1

0

tα

1− tz
dt

]
= α

∫ 1

0

tα

1− tz
dt+

∫ 1

0

tα

1− tz
dt+ z

∂

∂z

∫ 1

0

tα

1− tz
dt

= (α+ 1)

∫ 1

0

tα

1− tz
dt+

∫ 1

0

ztα+1

(1− tz)2
dt.
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The last integral is calculated using partial integration∫ 1

0

ztα+1

(1− tz)2
dt =

[
tα+1

1− tz

]1

0

−
∫ 1

0

(α+ 1)tα

1− tz
dt =

1

1− z
− (α+ 1)

∫ 1

0

tα

1− tz
dt.

Therefore we get some cancellation and arrive at

LαΨ =
1

1− z
which �nally gives

∂

∂z
(zαΨ(z)) =

zα

1− z
. (12)

Remark. Using the integral representation of Ψ(z) we can �nd a �nite expression
when α = n = 1, 2, . . .

Ψ(z) = z

∫ 1

0

tn

1− tz
dt = {u = tz} =

z

zn+1

∫ z

0

un

1− u
du

=
1

zn

∫ z

0

un

1− u
du =

1

zn

∫ z

0

[
−
n−1∑
k=0

uk +
1

1− u

]
du

= − 1

zn

n∑
k=1

zk

k
− log(1− z)

zn
= −

n∑
k=1

1

kzn−k
− log(1− z)

zn
.

3. Green's function for the weight ρ(z) = |z|2α

In this section we will �rst �nd Green's function for the weight ρ(z) = |z|2α and
then proceed to use it to calculate the Bergman kernel.

Proposition 1. Green's function for the weighted Laplacian ∂
∂z

1
ρ(z)

∂
∂z in D with

weight ρ(z) = |z|2α, α > −1, is given by

Gρ(z, w) =
1

4π

[
|z|2αΨ

( z
w

)
+ |w|2αΨ

(
w

z

)
−Ψ

(
1

wz

)
− |w|2α|z|2αΨ(wz)

]
where

Ψ(z) = z

∫ 1

0

tα

1− tz
dt =

z

α+ 1
2F1(1, α+ 1;α+ 2; z).

The proof will be given in three parts, �rst we motivate that the claimed ex-
pression for Green's function can be made well-de�ned. We will then proceed to
show that it really is Green's function by verifying the de�nition. The property we
consider is that for �xed w ∈ D our Green's function must satisfy

−4
∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) = δ0(z − w).

This will be done in two steps, �rst applying the ∂
∂z -operator and then applying

the ∂
∂z -operator. The second property, that Gρ(z, w) should vanish on ∂D, is not

hard to verify.

Part 1 of proof: Well-de�nedness. This formulation of Gρ(z, w) is not strictly well-
de�ned when either z = 0 or w = 0. To see that this is not an issue we consider
the limit as w → 0 and see that the limit exists. The other case can be treated
similarly.

As w approaches zero the second and the fourth term in Gρ goes to zero, so what
is left to consider is the behavior of the expression

|z|2αΨ
( z
w

)
−Ψ

(
1

wz

)
.
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The limit will depend on whether α equals zero or not. If α = 0 this simpli�es to

− ln
(

1− z

w

)
+ ln

(
1− 1

wz

)
= − ln(w − z) + ln(zw − 1)− ln(z) (13)

which is well-de�ned when w = 0. If α 6= 0 we use the integral representation of
Ψ(z) to reformulate

Ψ
( z
w

)
=
z

w

∫ 1

0

tα

1− t zw
dt = z

∫ 1

0

tα

w − tz
dt

and here the right hand side is well-de�ned when w = 0 and equals − 1
α . The

other term can be treated by a similar application of the integral representation of
Ψ(z). �

Part 2 of proof: Applying the ∂
∂z -operator. We treat the �rst three terms together

and then continue to di�erentiate the fourth term alone. We start by expressing
the �rst three terms by their integral representations

|z|2αΨ
( z
w

)
+ |w|2αΨ

(
w

z

)
−Ψ

(
1

wz

)
=

= |z|2α z
w

∫ 1

0

tα

1− t zw
dt+ |w|2αw

z

∫ 1

0

tα

1− twz
dt− 1

wz

∫ 1

0

tα

1− t 1
wz

dt

= z

∫ 1

0

(|z|2t)α

w − tz
dt+ w

∫ 1

0

(|w|2t)α

z − tw
dt−

∫ 1

0

tα

wz − t
dt.

With two changes of variable, s = |z|2t in the �rst and s = |w|2t in the second, we
get that

|z|2αΨ
( z
w

)
+ |w|2αΨ

(
w

z

)
−Ψ

(
1

wz

)
=

=

∫ |z|2
0

tα

wz − t
dt+

∫ |w|2
0

tα

wz − t
dt−

∫ 1

0

tα

wz − t
dt (14)

and we want to apply the ∂
∂z -operator to this expression and interpret the result

using Lemma 1. We proceed term by term. The �rst term can be di�erentiated
according to the Leibniz integral rule as

∂

∂z

∫ |z|2
0

tα

wz − t
dt =

|z|2α

wz − |z|2
z +

∫ |z|2
0

∂

∂z

tα

wz − t
dt

=
|z|2α

w − z
+ π

∫ |z|2
0

tα

w

∂

∂z

1

π

1

z − t
w

dt

=
|z|2α

w − z
+ π

∫ |z|2
0

tα

w
δ0

(
z − t

w

)
dt.

If the second and third terms are treated similarly we see that

∂

∂z

∫ |w|2
0

tα

wz − t
dt = π

∫ |w|2
0

tα

w

∂

∂z

1

π

1

z − t
w

dt = π

∫ |w|2
0

tα

w
δ0

(
z − t

w

)
dt

and

∂

∂z

∫ 1

0

tα

wz − t
dt = π

∫ 1

0

tα

w

∂

∂z

1

π

1

z − t
w

dt = π

∫ 1

0

tα

w
δ0

(
z − t

w

)
dt.
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Now let f be de�ned as a distribution with respect to z in the unit disc by the
expression

f(z) =

∫ |z|2
0

tα

w
δ0

(
z − t

w

)
dt+

∫ |w|2
0

tα

w
δ0

(
z − t

w

)
dt−

∫ 1

0

tα

w
δ0

(
z − t

w

)
dt.

In view of the above, an application of the ∂
∂z -operator to the expression (14) yields

|z|2α

w − z
+ πf(z). (15)

We want to show that f is zero in the distributional sense. Therefore take any
test function φ with support in the unit disc and then we try to calculate the action
of f on φ. We split f into three terms:

f1(z) =

∫ |z|2
0

tα

w
δ0

(
z − t

w

)
dt, f2(z) =

∫ |w|2
0

tα

w
δ0

(
z − t

w

)
dt,

f3(z) =

∫ 1

0

tα

w
δ0

(
z − t

w

)
dt.

If we interpret the integral
∫ a

0
ut(z)dt of a distribution ut(z) as〈∫ a

0

ut(z)dt, φ(z)

〉
=

∫ a

0

〈ut(z), φ(z)〉 dt

we get the action of f2:

〈f2, φ〉 =

〈∫ |w|2
0

tα

w
δ0

(
z − t

w

)
dt, φ(z)

〉

=

∫ |w|2
0

tα

w

〈
δ0

(
z − t

w

)
, φ(z)

〉
dt =

∫ |w|2
0

tα

w
φ

(
t

w

)
dt.

If we do the same for f3 we get that

〈f3, φ〉 =

∫ 1

0

tα

w
φ

(
t

w

)
dt.

The action of f1 is a bit more complicated and we begin by making a change of
variable:

f1(z) =

∫ |z|2
0

tα

w
δ0

(
z − t

w

)
dt =

{
t = |z|2s

}
=

∫ 1

0

|z|2αsα

w
δ0

(
z − |z|

2s

w

)
|z|2ds =

∫ 1

0

|z|2(α+1)sα

w
δ0

(
z − |z|

2s

w

)
ds.

We continue by calculating

〈f1, φ〉 =

〈∫ 1

0

|z|2(α+1)sα

w
δ0

(
z − |z|

2s

w

)
ds, φ(z)

〉
=

∫ 1

0

sα

w

〈
|z|2(α+1)δ0

(
z − |z|

2s

w

)
, φ(z)

〉
ds.

Since |z|2(α+1) is continuous when α > −1 we can interpret the action inside the
integral above as〈

|z|2(α+1)δ0

(
z − |z|

2s

w

)
, φ(z)

〉
=

〈
δ0

(
z − |z|

2s

w

)
, |z|2(α+1)φ(z)

〉
.
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For a motivation of this note �rst that δ0 is of order zero and then see the remarks

after De�nition 3.1.1 in [7]. Now let g(z) = z − |z|
2s
w = z

(
1− sz

w

)
so that

δ0(g(z)) =
δ0(z)

|det Jg(0)|
+

δ0
(
z − w

s

)∣∣det Jg
(
w
s

)∣∣ (16)

where det Jg(z) is the determinant of the Jacobian matrix of g evaluated at z. For
a motivation of this see Example 6.13 in [7] together with the observation that the
zeros of g are isolated. Explicit calculations give that

|det Jg(z)| =

∣∣∣∣∣
∣∣∣∣∂g∂z

∣∣∣∣2 − ∣∣∣∣∂g∂z
∣∣∣∣2
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣−szw

∣∣∣∣2 − ∣∣∣1− sz

w

∣∣∣2∣∣∣∣∣
=

∣∣∣∣s2|z|2

|w|2
−
(

1− sz

w

)(
1− sz

w

)∣∣∣∣ =
∣∣∣2Re

[sz
w

]
− 1
∣∣∣ .

Hence if we evaluate the previous expression at z = 0 and z = w
s we get that

|det Jg(0)| = 1 and
∣∣∣det Jg

(w
s

)∣∣∣ = 1.

Therefore (16) simpli�es to

δ0(g(z)) = δ0

(
z − |z|

2s

w

)
= δ0(z) + δ0

(
z − w

s

)
which we can use together with linearity to see that the action of the �rst δ0-function
vanish and the resulting action is〈

δ0

(
z − |z|

2s

w

)
, |z|2(α+1)φ(z)

〉
=
|w|2(α+1)

s2(α+1)
φ
(w
s

)
.

Therefore we can continue with the action of f1:

〈f1, φ〉 =

∫ 1

0

sα

w

|w|2(α+1)

s2(α+1)
φ
(w
s

)
ds =

∫ 1

0

1

w

|w|2(α+1)

sα+1
φ
(w
s

) ds
s

=

{
t =
|w|2

s

}
=

∫ ∞
|w|2

tα

w
φ

(
t

w

)
dt.

Then since |w| < 1 we get that if t > 1 we must have t
|w| > 1. Hence φ

(
t
w

)
= 0 if

t > 1 since φ has support inside the unit disc. Therefore we �nally get that

〈f1, φ〉 =

∫ 1

|w|2

tα

w
φ

(
t

w

)
dt.

Now we have all the parts to evaluate the action of f :

〈f, φ〉 = 〈f1, φ〉+ 〈f2, φ〉 − 〈f3, φ〉

=

∫ 1

|w|2

tα

w
φ

(
t

w

)
dt+

∫ |w|2
0

tα

w
φ

(
t

w

)
dt−

∫ 1

0

tα

w
φ

(
t

w

)
dt = 0.

We conclude that f is the zero distribution. Therefore we know the result of
di�erentiating the �rst three terms from (15).

We turn to the fourth term which can be treated using the chain rule (9). To do

this set g(z) = zw for which ∂g
∂z = w. This allows us to write

|w|2α|z|2αΨ(wz) = wαzαg(z)αΨ(g(z)) .

Now if we apply the ∂
∂z -operator we get

∂

∂z
|w|2α|z|2αΨ(wz) = wαzα

∂

∂z
g(z)αΨ(g(z)) .
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Observe here that the outer function zαΨ(z) is analytic and can be di�erentiated
using (12). Then by the the chain rule (9)

∂

∂z
|w|2α|z|2αΨ(wz) = wαzα

f(z)α

1− f(z)

∂f

∂z

which is simpli�ed to

∂

∂z
|w|2α|z|2αΨ(wz) = |w|2α|z|2α w

1− zw
Now we have treated all four terms and we have

∂

∂z
Gρ(z, w) =

1

4π

[
|z|2α

w − z
− |w|2α|z|2α w

1− zw

]
. (17)

�

Part 3 of proof: Applying the ∂
∂z -operator. We continue towards ∂

∂z
1
ρ(z)

∂
∂zGρ(z, w)

by dividing by ρ(z) = |z|2 which yields

1

ρ(z)

∂

∂z
Gρ(z, w) =

1

4π

[
1

w − z
− |w|2α w

1− zw

]
and when we apply the ∂

∂z -operator we get

∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) =

1

4π

[
∂

∂z

1

w − z
− ∂

∂z
|w|2α w

1− zw

]
.

The last term vanish since 1
1−zw is analytic in D and therefore must vanish under

the ∂
∂z -operator. The �rst term is treated by an application of Lemma 1 and we

see that

−4
∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) = δ0(z − w).

What is left to verify of the properties in the de�nition of Green's function is the
value of Gρ(z, w) when z ∈ ∂D. Observe that z ∈ ∂D means |z| = 1, which implies
that z = 1

z and ρ(z) = |z|2α = 1. If we use these facts we end up with

Gρ(z, w) =
1

4π

[
Ψ
( z
w

)
+ |w|2αΨ(wz)−Ψ

( z
w

)
− |w|2αΨ(wz)

]
= 0.

Thus we have shown that the function Gρ(z, w) satis�es the de�nition, and therefore
we can conclude that Gρ(z, w) is our Green's function. �

Remark. Our Green's function has the symmetry property Gρ(z, w) = Gρ(w, z),

essentially since Ψ(z) has the property that Ψ(z) = Ψ(z) if z ∈ C \ [1,∞).

Remark. In the unweighted case α = 0 we get the classical Green's function. We
have already calculated two out of four terms in (13) and the two remaining terms
are

|w|2αΨ

(
w

z

)
and |w|2α|z|2αΨ(wz)

which if α = 0 simplify to

− ln

(
1− w

z

)
= − ln(z − w) + ln(z) and ln(1− wz).

If we sum these terms according to the signs in our Green's function and combine
this with (13) we see that

− ln(w − z)− ln(z − w) + ln(1− wz) + ln(zw − 1) = −2 ln |z − w|+ 2 ln |1− wz|
which �nally yields the same expression as the classical case (6) when α = 0

Gρ(z, w) = − 1

2π
ln |z − w|+ 1

2π
ln |1− wz|.
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Corollary 1. The Bergman kernel for D with weight ρ(z) = |z|2α, α > −1, is
given by

Kρ(z, w) =
1

π

1

(1− zw)2
+
α

π

1

1− zw
.

Proof. Using Garabedian's formula (7) we can calculate Kρ(z, w) as

Kρ(z, w) = − 4

ρ(z)ρ(w)

∂2Gρ(z, w)

∂z∂w
, z 6= w.

From (17) we get

∂

∂z
Gρ(z, w) =

1

4π

[
|z|2α

w − z
− |w|2α|z|2α w

1− zw

]
=
|z|2α

4π

[
1

w − z
− |w|2α w

1− zw

]
.

If we apply the ∂
∂w -operator to the above the result is

∂

∂w

∂

∂z
Gρ(z, w) =

|z|2α

4π

[
∂

∂w

1

w − z
− ∂

∂w
|w|2α w

1− zw

]
=
|z|2α

4π

[
πδ0(w − z)− ∂

∂w
|w|2α w

1− zw

]
.

but since z 6= w we can disregard the δ0-function:

∂2Gρ(z, w)

∂w∂z
= −|z|

2α

4π

∂

∂w
|w|2α w

1− zw
.

If we carry out the di�erentiation and simplify we arrive at

∂

∂w
wα

wα+1

1− zw
= |w|2α

[
α

1− zw
+

1

(1− zw)2

]
and thus

∂2Gρ(z, w)

∂z∂w
= −|w|

2α|z|2α

4π

[
α

1− zw
+

1

(1− zw)2

]
.

Therefore we can conclude that

Kρ(z, w) =
1

π

1

(1− zw)2
+
α

π

1

1− zw
. �

4. Green's function for the weight ρ(z) = (1− |z|2)α

We will proceed as in the previous section by �rst �nding Green's function for
our second weight ρ(z) = (1 − |z|2)α and then we use it to calculate the Bergman
kernel.

Proposition 2. Green's function for the weighted Laplacian ∂
∂z

1
ρ(z)

∂
∂z in D with

weight ρ(z) = (1− |z|2)α, α > −1, is given by

Gρ(z, w) =
1

4π

(1− |w|2)α(1− |z|2)α

(1− wz)α
Ψ

(
(1− |w|2)(1− |z|2)

|1− wz|2

)
where

Ψ(z) = z

∫ 1

0

tα

1− tz
dt =

z

α+ 1
2F1(1, α+ 1;α+ 2; z), z ∈ D.

Proof. We need to verify that for a �xed w ∈ D we have

−4
∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) = δ0(z − w).
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We di�erentiate Gρ with respect to z using the chain rule (9). Therefore �x w
inside D and set

g(z) =
(1− |w|2)(1− |z|2)

|1− wz|2
=

(1− |w|2)

(1− zw)

(1− zz)
(1− zw)

so that we can write

Gρ(z, w) =
1

4π
(1− zw)αg(z)αΨ(g(z)) .

With some calculations one can show that g(z) is real and that 0 ≤ g(z) ≤ 1
where g(z) = 1 if and only if z = w.

The outer function zαΨ(z) can be di�erentiated by (12) and to �nd the inner
derivative we use the product rule

∂g(z)

∂z
=

(1− zz)
(1− zw)

∂

∂z

(1− |w|2)

(1− zw)
+

(1− |w|2)

(1− zw)

∂

∂z

(1− zz)
(1− zw)

.

To handle the �rst term note that 1
(1−zw) is z-analytic in D and therefore vanish

under the ∂
∂z -operator. Therefore we only have

∂g(z)

∂z
=

(1− |w|2)

(1− zw)

∂

∂z

(1− zz)
(1− zw)

which is calculated using the product rule as

∂g

∂z
=

1− |w|2

1− zw

[
−z

(1− zw)
− (−w)(1− zz)

(1− zw)2

]
=

1− |w|2

1− zw
w − z

(1− zw)2
.

Then by the chain rule (9) we get

∂

∂z
Gρ(z, w) =

1

4π
(1− zw)α

g(z)α

1− g(z)

∂g

∂z

which can be simpli�ed to

∂

∂z
Gρ(z, w) =

1

4π

(1− |z|2)α(1− |w|2)α+1

(w − z)(1− zw)α+1
. (18)

The last derivative is then

∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) =

∂

∂z

1

4π

(1− |w|2)α+1

(w − z)(1− zw)α+1
=

1

4

(1− |w|2)α+1

(1− zw)α+1

∂

∂z

1

π

1

w − z

where we have used the fact that since 1
(1−zw)α+1 is analytic in D it vanish under

the ∂
∂z -operator. We continue by applying Lemma 1 to the previous expression and

we see that
∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) = −1

4

(1− |w|2)α+1

(1− zw)α+1
δ0(z − w).

But this can be simpli�ed by realizing that this function vanish unless z = w, hence

−4
∂

∂z

1

ρ(z)

∂

∂z
Gρ(z, w) = δ0(z − w).

Finally it is not di�cult to realize that Gρ(z, w) is zero when z ∈ ∂D, since then
|z| = 1 which implies that the expression (1−|z|2) is zero. Thus we have shown that
the function Gρ(z, w) has the required properties, and therefore we can conclude
that Gρ(z, w) is our Green's function. �

Remark. Note that it has the desired symmetry property Gρ(z, w) = Gρ(w, z).
This is easy to verify once we notice that the argument to the Ψ-function is real
and that Ψ(z) is real for z ∈ [0, 1) on the real line.
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Remark. In the unweighted case α = 0 our Green's function reduces to classical
Green's function (6) since for α = 0

Gρ(z, w) = − 1

4π
ln

(
1− (1− |z|2)(1− |w|2)

|1− zw|2

)
which can be simpli�ed to

Gρ(z, w) =
1

4π

(
− ln

[
|1− zw|2 − (1− |z|2)(1− |w|2)

]
+ ln |1− zw|2

)
= − 1

2π
ln |z − w|+ 1

2π
ln |1− zw|.

Corollary 3. The Bergman kernel for D with weight ρ(z) = (1 − |z|2)α, α > −1,
is given by

Kρ(z, w) =
α+ 1

π

1

(1− zw)α+2
.

Proof. Using Garabedian's formula (7) we can calculate Kρ(z, w) as

Kρ(z, w) = − 4

ρ(z)ρ(w)

∂2Gρ(z, w)

∂z∂w
, z 6= w.

But from (18) we already have

∂Gρ(z, w)

∂z
=

1

4π

(1− |z|2)α(1− |w|2)α+1

(w − z)(1− zw)α+1
.

To apply the ∂
∂w -operator we begin by using the product rule

∂2Gρ(z, w)

∂w∂z
=

1

4π

∂

∂w

(1− |z|2)α

(w − z)
(1− |w|2)α+1

(1− zw)α+1

=
1

4π

[
(1− |w|2)α+1

(1− zw)α+1

∂

∂w

(1− |z|2)α

(w − z)
+

(1− |z|2)α

(w − z)
∂

∂w

(1− |w|2)α+1

(1− zw)α+1

]
.

The �rst term will vanish after an application of Lemma 1 and after noting that
z 6= w. With some calculations we can �nd the second term which becomes

∂2Gρ(z, w)

∂w∂z
= −α+ 1

4π

(1− |z|2)α(1− |w|2)α

(1− zw)α+2
.

Therefore we can conclude that

Kρ(z, w) =
α+ 1

π

1

(1− zw)α+2
. �

5. The Poisson kernel

Now using the two Green's functions from the previous sections we will derive
the Poisson kernels for our two weights.

If we know the Poisson kernel, which we will denote as Pρ(z), we can use the
Poisson integral to represent the solution to (4) as

u(reiθ) =
1

2π

∫ 2π

0

Pρ(re
i(θ−ψ))f(eiψ)dψ. (19)

If we compare this to the solution formula (5)

u(z) =

∫
∂D

f(ζ)

ρ(ζ)

∂Gρ(z, ζ)

∂ν(ζ)
ds(ζ)
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we see that we can �nd the Poisson kernel by di�erentiating Green's function. If
we let z = reiθ and ζ = eiψ in the integral (19) we get that

u(z) =
1

2π

∫ 2π

0

Pρ(zζ)f(ζ)dψ

and therefore we can identify

Pρ(zζ) =
2π

ρ(ζ)

∂Gρ(z, ζ)

∂ν(ζ)
. (20)

To �nd the normal derivative of Gρ consider the following simple lemma:

Lemma 2. Let f be de�ned on some neighborhood around ∂D and assume that it
is di�erentiable on ∂D. If f(z) = 0 for all z ∈ ∂D then

∂f

∂ν

∣∣∣∣
z∈∂D

= −2

z

∂f

∂z

where ν(z) is the inward unit normal at z.

Proof. We switch to polar coordinates and see that f(eiθ) = 0 for all θ, which

implies that ∂f
∂θ

∣∣∣
r=1

= 0. If we plug this into the chain rule we get for r = 1

∂f

∂x
=
∂f

∂r

∂r

∂x
+
∂f

∂θ

∂θ

∂x
=
∂f

∂r

∂r

∂x
=
∂f

∂r

x

r
= x

∂f

∂r
,

∂f

∂y
=
∂f

∂r

∂r

∂y
+
∂f

∂θ

∂θ

∂y
=
∂f

∂r

∂r

∂y
=
∂f

∂r

y

r
= y

∂f

∂r
.

The inward unit normal at ζ = x+iy ∈ ∂D is ν(ζ) = (−x,−y) and so the normal
derivative is

∂f

∂ν
=

(
∂f

∂x
,
∂f

∂y

)
· (−x,−y) = −x∂f

∂x
− y ∂f

∂y
.

Using the previous calculations and the fact that r2 = x2 + y2 = 1 we can simplify
the normal derivative on ∂D as

∂f

∂ν

∣∣∣∣
r=1

= −x2 ∂f

∂r
− y2 ∂f

∂r
= −(x2 + y2)

∂f

∂r
= −∂f

∂r
.

For the Wirtinger derivative ∂f
∂z we can write

2
∂f

∂z
= 2

1

2

(
∂f

∂x
+ i

∂f

∂y

)
= x

∂f

∂r
+ iy

∂f

∂r
= z

∂f

∂r

and so we conclude that on ∂D we have the formula

∂f

∂ν

∣∣∣∣
r=1

= −2

z

∂f

∂z
. �

Now we can transform the normal derivative in (20) into something which de-
pends on a derivative we have already calculated. If we use the conjugate property
of the Wirtinger derivative (8) and the symmetry property (3) we see that

∂Gρ(z, w)

∂w
=
∂Gρ(w, z)

∂w
=
∂Gρ(w, z)

∂w

and this last derivative we have already calculated for both our Green's functions.
Therefore we get from the previous lemma and our previous calculation that the
identi�cation (20) can be written

Pρ(zζ) = − 4π

ζρ(ζ)

∂Gρ(z, ζ)

∂ζ
= − 4π

ζρ(ζ)

∂Gρ(ζ, z)

∂ζ
. (21)

Now we have all we need to �nd the two Poisson kernels.
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Corollary 2. The Poisson kernel for the weighted Laplace equation (1) in D with
the weight ρ(z) = |z|2α, α > −1, is given by

Pρ(z) =
1

1− z
+
z|z|2α

1− z
.

Proof. In (17) we found the �rst derivative as

∂Gρ(z, w)

∂z
=

1

4π

[
|z|2α

w − z
− |w|2α|z|2α w

1− zw

]
which if we rename the variables is equivalent to

∂Gρ(ζ, z)

∂ζ
=

1

4π

[
|ζ|2α

z − ζ
− |z|2α|ζ|2α z

1− ζz

]
.

Now if we plug this into (21) we �nd that

Pρ(zζ) = − 4π

ζ|ζ|2α
∂Gρ(ζ, z)

∂ζ
= − 4π

ζ|ζ|2α
1

4π

[
|ζ|2α

z − ζ
− |z|2α|ζ|2α z

1− ζz

]
=

1

ζζ − ζz
+ |z|2α

1
ζ z

1− ζz
.

Now ζ lies on ∂D and so |ζ|2 = 1, |z|2α = |zζ|2α and 1
ζ = ζ. Hence

Pρ(zζ) =
1

1− ζz
+ |zζ|2α ζz

1− ζz
.

and therefore we get the desired expression

Pρ(z) =
1

1− z
+
z|z|2α

1− z
. �

In the next case we already know the Poisson kernel from [8]. So we want to
verify the connection to our Green's function.

Corollary 4. The Poisson kernel for the weighted Laplace equation (1) in D with
the weight ρ(z) = (1− |z|2)α, α > −1, is given by

Pρ(z) =
(1− |z|2)α+1

(1− z)(1− z)α+1
.

Proof. We proceed exactly as before and in (18) we found that

∂Gρ(z, w)

∂z
=

1

4π

(1− |z|2)α(1− |w|2)α+1

(w − z)(1− zw)α+1

which if we rename the variables is equivalent to

∂Gρ(ζ, z)

∂ζ
=

1

4π

(1− |ζ|2)α(1− |z|2)α+1

(z − ζ)(1− ζz)α+1
.

If we plug this into (21) we arrive at

Pρ(zζ) = − 4π

ζ(1− |ζ|2)α
∂Gρ(ζ, z)

∂ζ
= − 4π

ζ(1− |ζ|2)α
1

4π

(1− |ζ|2)α(1− |z|2)α+1

(z − ζ)(1− ζz)α+1

=
(1− |z|2)α+1

(ζζ − ζz)(1− ζz)α+1
.

Now ζ lies on ∂D and so |ζ|2 = 1 and |z|2 = |zζ|2. This allows us to simplify a little
and we get �nally

Pρ(zζ) =
(1− |zζ|2)α+1

(1− ζz)(1− ζz)α+1
.
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Therefore we can conclude that the Poisson kernel for the weight ρ(z) = (1−|z|2)α

is

Pρ(z) =
(1− |z|2)α+1

(1− z)(1− z)α+1

which is the same expression which Olofsson and Wittsten �nd in [8]. �
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